
C___582 – the next generation

Standard size with outstanding features

www.tr-electronic.com

Scanning – Optical and magnetic

Three detections for perfect cost-benefit ratio

O High-resolution optical scanning

Thanks to modern Opto-Asic technology, up to 18 bits (262,144 steps) can be generated within a single revolution. This is supplemented with up to 4,096 absolute scanned revolutions. Signal processing occurs at FPGA speed. This type of scanning is always used whenever position values need to be captured very quickly and with high resolution. This type of scanning is denoted by the letter "O" in the type designation.

E Optical scanning for standard applications The majority of industrial applications use rotary encoders with a resolution of up to 15 bits per revolution and up to 4,096/256,000 scanned revolutions. Signal processing within the processor enables multiple evaluation functions and optimal adjustment to new requirements. Signals such as limit switches and speed monitoring can also be generated. This type of scanning is denoted by the letter "E" in the type designation.

M Magnetic scanning for price-sensitive applications

Price-conscious, magnetic rotary encoders are the first choice for applications with lesser requirements in terms of accuracy, resolution and timing. The resolution of a revolution is 11 bits and this is supplemented with 4,096 absolute scanned revolutions. There is no extended signal processing, though the resolution of this device is programmable. This type of scanning is denoted by the letter "M" in the type designation.

Shaft types


Persistent machine concept

The 58 mm series of the compact rotary encoder was developed for diverse mounting variations. Therefore, there will always be a fitting device for any installation situation that should arise. Functions that you need with a solid shaft, are also available with a hollow shaft. Our rotary encoders with solid shaft are available with many coupling options for easy integration. The variety of mechanical solutions enhances your room for innovative constructions. You will find a sample of the numerous mounting possibilities in the following overview.

Important: not all possible combinations will be shown.

3

C___582 — the next generation: Standard size with outstanding features

- _Efficient design
- _Robust magnetic multiturn rotary encoder CM_582
- _Servo flange, clamping flange Slip-on hollow shaft up to 15 mm
- Precise optical multiturn encoder CE_582, CO_582
- _Servo flange, clamping flange Slip-on hollow shaft up to 15 mm Hollow-through-shaft up to 15 mm
- _Connectors axial or radial

Everything the application needs – reduce to the max.

13 bit resolution within one revolution (singleturn)12 bit revolutions (multiturn), optionally 16 bit.Output up to 256,000 revolutions.

Plenty of shaft diameters, flanges and torque supports make the magnetic encoders CM_582 fit into the mechanic surroundings of many applications.

15 or 18 bit resolution in one revolution (singleturn) 12 bit revolutions (multiturn), optionally 16 bit. Output of up to 256,000 revolutions."

CE_582 and CO_582 add hollow-through shafts with diameters up to 15 mm to the standard range of solid and slip-on blind shafts and flanges.

Mounting space is valuable. Do not let cabling interfere with other parts and components.

For solid and slip-on shafts (blind shaft), you can choose between connectors axial (at the side opposite to the shaft) or radial (at the side of the encoder housing).

_Parameterizable gearbox	Fractional gearbox parameters (numerator/denominator) for almost any reproduction of gearbox factors. Also for exact detection of closed rotary axes.
Latest communication standards for Industry 4.0	The new C582 generation of industrial standard rotary encoders is rigorously equipped with state-of-the-art chip families.
_Easy installation with open configuration options	TR absolute rotary encoders fulfill the standards of the respective user organizations for parameterization. Users can thus navigate the standard parameters without difficulty. The free configuration also offers easy access to all functions which are available in addition to the standard functions.
_Alarms and diagnostics	How's about my machine? To know that at any time is one of the core aspects of industry 4.0. Be it capacity utilisation or upcoming services: C582 provides all necessary alarms and diagnostic messages for long term machine and plant surveillance.
_"On the fly" preset for adjustment during the process	Preset values are transmitted via the real-time capable process image area. This means that absolute adjustments (also called "preset" or "offset adjustment") can be performed synchronously with the control cycle even while the system is in operation. No more axis stops necessary.
_Update time <1 ms	Suitable for quick position control with less than 1 ms encoder actual value updating for the bus output.
_Speed output with adjustable averaging	The time base for the speed evaluation can be freely set within a range of one millisecond to one second and can also be scaled in any units.

5

_Free mapping of process data in For EtherCAT, the transmitted telegram can be freely designed to meet the programmers needs. Choose free from **Ethernet Telegram** current reading position, speed, warnings, alarms, softwarecams ... what is needed for your process / your control architecture. Software-Cams Since industrial revolution, cams were a propriate way to control automated processes. At first with mechanical camshafts and then with electromechanic cam switches. Now, cam signals are calculated in the central conrol - or, even more comfortable – directly in C__582 ETC. Cam signals are mapped arbitrarily into the process data channel and are available to other bus nodes. For precise position and path control of moving axes, all Distributed Clocks down to 100 µs cycle time sensors and actors involved must be synchonized. With

EtherNet/IP^{*}

_Firmware Update via TCP/IP

_ Device Level Ring DLR

Computer and smartphones are the role model: New functionality by new firmware. New firmware for C__582 EIP can be loaded via the asynchronous TCP/IP-cannel. Existing hardware is future-proof and can be equipped even for new applications.

EtherCAT, this is achieved by distributed clocks. The smallest

possible cycle time in C__582 is 100 μ s.

A ring makes the network safe. Similar to MRP with PROFINET, DLR provides higher availability to machines and plants with Ethernet/IP. With one additional connection from the last encoder in a branch back to the switch, connection is closed to a ring with much higher reliability. Break in signal transmission is detected at once and bypassed. A single cable break this does not lead to failure of all nodes behind the break in a branch.

_Encoderprofile	C582 EPN consequently supports the EPN-Encoder profile of Profibus International standardisation organisation.
_Profinet with IRT	The PROFINET variant therefore uses cutting-edge technology with long-term availability and is absolutely compliant with the latest standards of the PI User Organization. Real- time synchronization (IRT) enables precisely synchronized positioning of several axes.
_Neighborhood detection	With neighborhood detecion, you exchange devices without the use of an engineering tool. An encoder that is connected newly to the network can determine his position and function in the network by help of his physical neighbours and then requests the parameter data for this function from the master control.
_Fast Startup for quick system availability	C582 PROFINET starts faster than any other bus rotary encoder. Once configured a stable, valid absolute position value is available in the PROFINET control just a few instants after restoration of supply. System startup is greatly accelerated and modular machine concepts in particular (with periodically decoupled modules) benefit directly from this technology.*
_Media-Redundancy Protocol for highest reliability	One ring for reliability. The PROFINET interface of the C582 supports the innovative Media Redundancy Protocol MRP. Normally PROFINET only supports a linear/tree structure. A redundant connection is not primarily provided as standard. MRP significantly increases availability with one simple device! Branches are connected to a ring with an additional line from the last node to the next switch. The appropriately configured nodes detect this. One of the nodes now disconnects this ring, by "ignoring" the second connection. If a connection fails (due to cable breakage or failure of a node), the nodes detect this and attempt to find another way to the rest of the system. The previously opened connection is now closed and all nodes are reconnected to the network.*

*An encoder can either be configured for Fast Startup or for MRP.

IO-Link

Low connection costs: M12, 4-pin, A-coded, without shield, supply and data in one cable.

_Cyclical transfer: Position, speed, 2 independent position limit switches, speed monitor.

_Transferred parameters can be configured.

_Cycle time for cyclical transfer >= 1 ms.

_Acyclical transfer:

- Error messages, operating hours.
- _Hardware switching output programmable: Either speed monitor, limit switches ...

An IO-Link master is often already present in a machine, usually to read in and parameterize initiators. TR-Electronic rotary encoders with IO-Link use exactly this infrastructure to communicate with the control.

If a machine or system already has IO-Link integrated as a bus system, the obvious approach is to also control absolute rotary encoders with this bus system. The actual value communication uses a star distribution system between rotary encoder and the next distribution node and is compatible with normal, digital initiator communication.

The zero position of the rotary encoder is conveniently adjusted via IO-Link and the usual bus parameterization tools – without turning the encoder itself.

This makes installation child's play. The transferred parameters can also be selected at the same time.

Machine condition monitoring made easy: Important status information is transferred via the acyclical services.

C__582 with IO-Link enables internal states to be converted into programmable switching states of the digital output. This enables simple implementation of e.g. speed monitoring, position limit value monitoring, limit switches and much more. The rotary encoder reacts to exceeding of a speed range, for example, through a digital signal like a normal initiator and can also send status messages to a very simple electronic analysis module.

_The direct route for mounted encoders to SINAMICS[®] drives.

_Direct position measurement without gear backlash

_Reliability through redundancy

_All mechanical variants of Generation 2

DRIVE-CLIQ is the open system interface for position sensors for the SINAMICS[®] drive family from Siemens AG for motion control. This fast absolute encoder interface connects the converter centrally installed in the switch cabinet to the rotary encoders and position sensors directly on the respective axes.

For increased reliability and precision, it may be desirable not only to use the encoder in the motor for position control. Encoders mounted directly on the axis to be measured eliminate the uncertainties caused by gear backlash.

Mounted encoders used in conjunction with motor-integrated systems can reliably detect slipping of connections or even shaft/gear breakage.

The C_ _582s from TR-Electronic are available with the DRIVE-CLiQ interface.

The design engineers thus have access to the entire mechanical diversity of the modular system with full integration into the SINAMICS[®] drive technology family.

9

Absolute Rotary Encoders - Family C__58 - Housing 58 mm

58 mm housing for standard industrial applications

Encoders with size 58 mm have been established as the industrial standard for absolute and incremental encoders. With TR-Electronic, you get as a standard what is special with other manufacturers. Absolute encoders of Series 58 are modular. Your demands can be realized precisely and in most cases without any special development.

- _ Industrial standard size 58 mm
- _ Cost optimized by different resolution ranges
- _ Compatible with a vast number of control systems
- _ Shaft-, flange and assembly versions
- _ Same mechanics plenty of interfaces
- _ Compact Connector System perfect for machines produced in series
- Can be adapted to singular applications via parametrization done by user
- _ Available with customer-specific connector systems
- _ UL approval for most types

Contents

11
14
20
22

Flanges	24
Assembly Examples	28
Dimensional Drawings	31

Magnet detection (M) Magnet detection (P)

Product	CMV582	CMS582	CPV582	
		I		
Detection	Magnet detection (M)	Magnet detection (M)	Magnet detection (P)	
Single / multi	(M) Multi (S) single	(M) Multi (S) single	(M) Multi (S) single	
Supply	1127 VDC*	1127 VDC*	1127 VDC*	
Full resolution	<= 25 bit *	<= 25 bit *	<= 28 bit *	
Steps per turn	<= 8192 *	<= 8192 *	<= 65536 *	
Number of turns	<= 4096 *	<= 4096 *	<= 4096 *	
Precision	± 0,5 °	± 0,5 °	± 0,5 °	
Shaft diameters available	6, 8, 10, 12, 14, 1/4", 3/8", 1/2"	6, 8, 10, 12, 14, 15, 1/4", 3/8", 1/2"	6, 8, 10, 12, 14, 1/4", 3/8", 1/2"	
Connectors	Connector axial or radial *	Connector axial or radial *	Connector axial or radial *	
Ambient temperature	-20+75 °C	-20+75 °C	-20+75 °C	
Protection class	IP65	IP65	IP65	
ATEX-zone	Option 2/22	Option 2/22	Option 2/22	
Interface	SSI INTERBUS	SSI INTERBUS	SSI INTERBUS	
	Analog	Analog PROFIT®	Analog PROFP	
	PROFO [®] EtherNet/IP	EtherNet/IP	EtherNet/IP	
	CANopen POWERLINK	CANopen POWERLINK	CANopen POWERLINK	
	🛛 IO-Link	🚷 IO-Link	🚷 IO-Link	
	Ether CAT.	Ether CAT. P	Ether CAT	
Option, additional interfaces (on request)				
Weblink	www.tr-electronic.com/s/ S013306	www.tr-electronic.com/s/ S013307	www.tr-electronic.com/s/ S022328	
QR-Code				

* depending on the interface

Can't find the right variant? Please contact us (info@tr-electronic.de)

Magnet detection (P) Optical 15 bit (E)

CPS582	CEV582	CEH582
Magnet detection (P)	Optical 15 bit (E)	Optical 15 bit (E)
		(M) Multi (S) single
-	1127 VDC*	1127 VDC*
<= 28 bit *	<= 33 bit *	<= 33 bit *
<= 65536 *	<= 32768 *	<= 32768 *
<= 4096 *	<= 256000 *	<= 256000 *
± 0,5 °	± 1 digit	± 1 digit
6, 8, 10, 12, 14, 15, 1/4", 3/8", 1/2"	6, 8, 10, 12, 14, 1/4", 3/8", 1/2"	6, 8, 10, 12, 14, 15, 1/4", 3/8", 1/2"
Connector axial or radial *	Connector axial or radial *	Connector radial
-20+75 °C	-20+75 °C	-20+75 °C
IP65	IP65	IP54, option 65
Option 2/22	Option 2/22	Option 2/22
REGED EtherNet/IP	Analog INETT DBM-CLO EtherCAT PRORU EtherNet/IP	Analog PROFIL® INTEGE EtherCAT. PROFIL® EtherNet/IP
CANopen POWERLINK	CANopen POWERLINK	CANopen POWERLINK
Ether cat 🌩 🎯 IO -Link	Ether CAT 🌩 🏾 🗞 IO -Link	Ether cat. 🕈 P 😵 IO -Link
www.tr-electronic.com/s/ S022330	www.tr-electronic.com/s/ S013308	www.tr-electronic.com/s/ S013312
	Magnet detection (P)(M) Multi (S) single1127 VDC*<= 28 bit *	Magnet detection (P)Optical 15 bit (E)(M) Multi (S) single(M) Multi (S) single1127 VDC*1127 VDC*<= 28 bit *

* depending on the interface

Optical 15 bit (E) Optical 18 bit (O)

CES582	COV582	COH582	COS582	
Optical 15 bit (E)	Optical 18 bit (O)	Optical 18 bit (O)	Optical 18 bit (O)	
(M) Multi (S) single	(M) Multi (S) single	(M) Multi (S) single	(M) Multi (S) single	
1127 VDC*	1127 VDC*	1127 VDC*	1127 VDC*	
 <= 33 bit *	<= 36 bit *	<= 36 bit *	<= 36 bit *	
<= 32768 *	<= 262144 *	<= 262144 *	<= 262144 *	
<= 256000 *	<= 262144 *	<= 262144 *	<= 262144 *	
± 1 digit	± 1 digit	± 1 digit	± 1 digit	
6, 8, 10, 12, 14, 15, 1/4", 3/8", 1/2"	6, 8, 10, 12, 14, 1/4", 3/8", 1/2"	6, 8, 10, 12, 14, 15, 1/4", 3/8", 1/2"	6, 8, 10, 12, 14, 15, 1/4", 3/8", 1/2"	
Connector axial or radial *	Connector axial or radial *	Connector radial	Connector axial or radial *	
 -20+75 °C	-20+75 °C	-20+75 °C	-20+75 °C	
IP65	IP65	IP54, option 65	IP65	
 Option 2/22	Option 2/22	Option 2/22	Option 2/22	
 SSI INTERBUS	SSI INTERBUS	SSI INTERBUS	SSI NTERBUS	
Analog PROFIT	Analog PROFI ®	Analog	Analog	
	DRIVE-CLIQ DRIVE-CLIQ		DRAVE-CUQ Ether CAT.	
EtherNet/IP	になってい。 「日日日」 「日日日日」 「日日日」 「日日日日」 「日日日」 「日日日日」 「日日日」 「日日日日日日日日日日	₽₽₽₽₽ ©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©	₽₽₽₽₽ ©©©©©® ©©©©©	
CANopen POWERLINK	CANopen POWERLINK	CANopen POWERLINK	CANopen POWERLINK	
Ether CAT. ← P ⓒ IO -Link	Ether cat. 🔶 😧 IO -Link	Ether caT P IO -Link	Ether caT. T P @ IO -Link	
www.tr-electronic.com/s/S01331	3 www.tr-electronic.com/s/S013314	www.tr-electronic.com/s/S013315	www.tr-electronic.com/s/S013316	

* depending on the interface

Can't find the right variant? Please contact us (info@tr-electronic.de)

Order code	Steps per turn	Turns	Shaft / Flange	Connector position	Connector type	Remark
CEH582 -EIP(E) Or	otical 15 Bit, ho	ollow shaft, Ethe	ernet/IP			
CEH582M-00002	8192	4096	3/8" hollow through shaft	Radial	3x 4 pin M12	Clamping ring flange side
CEH582M-00005	32768	4096	12H7 hollow through shaft	Radial	3x 4 pin M12	Clamping ring flange side
CEH582-EPN (E) O	ptical 15 Bit, h	ollow shaft, PR	OFINET			
CEH582M-00003	8192	4096	10H7 hollow through shaft	Radial	3x 4 pin M12	Clamping ring flange side
CEH582M-00004	8192	4096	12H7 hollow through shaft	Radial	3x 4 pin M12	Clamping ring flange side
CEH582-ETC (E) O	ptical 15 Bit. h	ollow shaft. Eth	erCAT			
CEH582M-00007	8192	4096	10H7 hollow through shaft	Radial	3x 4 pin M12	Clamping ring flange side
CEH582 -SSI (E) O	ntical 15 Bit h	ollow shaft SSI				
CEH582M-10271	4096	4096	10H7 hollow through shaft	Radial	12 pin M23	Clamping ring flange side
CEH582M-00019	4096	4096	10H7 hollow through shaft	Radial	12 pin M23	Clamping ring flange side
CEH582M-00022	4096	4096	12H7 hollow through shaft	Radial	12 pin M23	Clamping ring flange side
CEH582S-00001	4096	1	12H7 hollow through shaft	Radial	12 pin M23	Clamping ring flange side
CES582-EIP (E) Op	tical 15 Bit, bli	nd shaft, Etherr	net/IP			
CES582M-00009	8192	4096	14H7 blind shaft	Axial	3x 4 pin M12	Clamping ring flange side
CES582-EPN (E) O	ntical 15 Bit h	lind shaft PROF	INFT			
CES582M-00001	8192	4096	15H7 blind shaft	Radial	3x 4 pin M12	Clamping ring flange side
CES582M-00004	8192	4096	12H7 blind shaft	Axial	3x 4 pin M12	Clamping ring flange side
CES582M-00007	8192	4096	12H7 blind shaft	Radial	3x 4 pin M12	Clamping ring flange side
CES582S-00001	8192	1	15H7 blind shaft	Radial	3x 4 pin M12	Clamping ring flange side
CEV582-EIP (E) Op	otical 15 Bit, so	lid shaft, Ethern	iet/IP			
CEV582M-00027	4096	4096	6GL/10 ZB50	Radial	3x 4 pin M12	
				1	1	

CEV582M-00027	4096	4096	6GL/10 ZB50	Radial	3x 4 pin M12	
CEV582M-00003	8192	4096	10FL/19,5 ZB36 3xM3+3xM4	Axial	3x 4 pin M12	
CEV582M-00004	8192	4096	10FL/19,5 ZB36 3xM3+3xM4	Radial	3x 4 pin M12	

For further product information simply enter the order number in the search field at www.tr-electronic.com.

* depending on the interface

We will help you to select the most suitable products from the complete TR range. Please contact us (info@tr-electronic.de).

Order code	Steps per turn	Turns	Shaft / Flange	Connector position	Connector type	Remark
	·					
CEV582-EPN (E) O	ptical 15 Bit, s	olid shaft, PRO	FINET			
CEV582M-00024	4096	4096	6GL/10 ZB50	Radial	3x 4 pin M12	Absorber flange
CEV582M-00002	8192	4096	10FL/19,5 ZB36 3xM3+3xM4	Radial	3x 4 pin M12	
CEV582M-00011	8192	4096	10FL/19,5 ZB36 3xM3+3xM4	Radial	3x 4 pin M12	Reset Switch
CEV582M-00014	8192	4096	10FL/19,5 ZB50 D65	Radial	3x 4 pin M12	
CEV582M-00015	8192	4096	10GL/19,5 ZB36 D65	Axial	3x 4 pin M12	
CEV582M-00022	8192	4096	6GL/10 ZB50	Radial	3x 4 pin M12	Reset Switch
CEV582M-00025	8192	4096	10FL/19,5 ZB50	Axial	3x 4 pin M12	
CEV582M-00032	8192	4096	10FL/19,5 ZB36 3xM3+3xM4	Radial	3x 4 pin M12	Reset Switch
CEV582S-00005	8192	1	6GL/10 ZB50	Radial	3x 4 pin M12	Absorber flange
CEV582S-00004	32768	1	10FL/19,5 ZB36 3xM3+3xM4	Radial	3x 4 pin M12	Seal Pack

CEV582-ETC (E) O	CEV582-ETC (E) Optical 15 Bit, solid shaft, EtherCAT						
CEV582M-00005	8192	4096	10FL/19,5 ZB36 3xM3+3xM4	Axial	3x 4 pin M12		
CEV582M-00006	8192	4096	10FL/19,5 ZB36 3xM3+3xM4	Radial	3x 4 pin M12		
CEV582M-00008	8192	4096	6GL/10 ZB50	Radial	3x 4 pin M12		
CEV582M-00013	8192	4096	10GL/19,5 ZB36 3xM3+3xM4	Axial	3x 4 pin M12		
CEV582M-00030	8192	4096	10FL/19,5 ZB36 D65	Radial	3x 4 pin M12		

CEV582 -SSI (E) Optical 15 Bit, solid shaft, SSI						
CEV582M-00036	4096	4096	10GL/19,5 ZB36 3xM3+3xM4	Radial	12 pin M23	
CEV582M-00038	4096	4096	6GL/10 ZB50 D65	Radial	12 pin M23	
CEV582M-00045	4096	4096	6GL/10 ZB50	Radial	12 pin M23	
CEV582M-00072	4096	4096	12FL/25 ZB36 D65	Radial	12 pin M23	
CEV582M-10025	4096	4096	10FL/19,5 ZB36	Radial	12 pin M23	
CEV582M-10069	4096	4096	6GL/10 ZB50	Radial	12 pin M23	
CEV582M-00055	8192	4096	12FL/25 ZB36 3xM3+3xM4	Radial	1 m cable, open end	

CEV582 -IBS (E) C	ptical 15 Bit, sol	id shaft, Interbus				
CEV582M-00039	4096	4096	10FL/19,5 ZB50 D65	Radial	2 x 9pin M23	

For further product information simply enter the order number in the search field at www.tr-electronic.com.

Order code	Steps per turn	Turns	Shaft / Flange	Connector position	Connector type	Remark
CMS582-EIP (M) N	lagnet detecti	on, blind shaft,	Ethernet/IP			
CMS582M-00012	8192	4096	12H7 blind shaft	Axial	3x 4 pin M12	Clamping ring flange side
CMS582M-00016	8192	4096	15H7 blind shaft	Radial	3x 4 pin M12	Clamping ring flange side
CMS582-EPN (M) I	Magnet detect	tion, blind shaft	t, profinet			
CMS582M-00001	8192	4096	10H7 blind shaft	Axial	3x 4 pin M12	
CMS582M-00004	8192	4096	15H7 blind shaft	Radial	3x 4 pin M12	
CMS582M-00010	8192	4096	15H7 blind shaft	Axial	3x 4 pin M12	Clamping ring flange side
CMS582M-00011	8192	4096	12H7 blind shaft	Axial	3x 4 pin M12	Clamping ring flange side
CMS582M-00014	8192	4096	12H7 blind shaft	Radial	3x 4 pin M12	Clamping ring flange side
CMS582M-00015	8192	4096	10H7 blind shaft	Radial	3x 4 pin M12	Clamping ring flange side
CMS582M-00017	8192	4096	14H7 blind shaft	Radial	3x 4 pin M12	Clamping ring flange side, Reset
CMS582M-00019	8192	4096	08H7 blind shaft	Axial	3x 4 pin M12	Clamping ring flange side, Reset
CMS582M-00021	8192	4096	12H7 blind shaft	Radial	3x 4 pin M12	Clamping ring flange side
CMS582-ETC (M) I	Vagnet detect	ion, blind shaft	:. EtherCAT			
CMS582M-00009	8192	4096	12H7 blind shaft	Radial	3x 4 pin M12	Clamping ring flange side
CMS582M-00013	8192	4096	10H7 blind shaft	Axial	3x 4 pin M12	Clamping ring flange side
CMS582-IOL (M) N	lagnet detect	ion blind shaft	IQ-Link			
CMS582M-00018	4096	4096	10H7 blind shaft	Radial	4 pin M12	Clamping ring flange side
CMS582-SSI (M) N	lagnet detecti	on. blind shaft.	SSI			
CMS582M-00025	8192	4096	12H7 blind shaft	Radial	12 pin M23	Clamping ring flange side
CMV582-EIP (M) N	lagnet detect	ion, solid shaft,	Ethernet/IP			
CMV582M-00003	8192	4096	10FL/19,5 ZB36	Axial	3x 4 pin M12	
CMV582M-00004	8192	4096	10FL/19,5 ZB36	Radial	3x 4 pin M12	
CMV582M-00015	8192	4096	6GL/10 ZB50	Radial	3x 4 pin M12	
CMV582M-00018	8192	4096	3/8"FL/22,3 ZB36	Axial	3x 4 pin M12	

For further product information simply enter the order number in the search field at www.tr-electronic.com.

We will help you to select the most suitable products from the complete TR range. Please contact us (info@tr-electronic.de).

Order code	Steps per turn	Turns	Shaft / Flange	Connector position	Connector type	Remark
CMV582-EPN (M)	Magnet detec	tion, solid shaf	t, Profinet			
CMV582M-00001	8192	4096	10FL/19,5 ZB36	Axial	3x 4 pin M12	
CMV582M-00002	8192	4096	10FL/19,5 ZB36	Radial	3x 4 pin M12	
CMV582M-00007	8192	4096	10FL/19,5 ZB36 3xM3+3xM4	Axial	3x 4 pin M12	
CMV582M-00008	8192	4096	10FL/19,5 ZB36	Axial	3x 4 pin M12	With reset button
CMV582M-00009	8192	4096	10FL/19,5 ZB50	Radial	3x 4 pin M12	
CMV582M-00016	8192	4096	6GL/10 ZB50	Axial	3x 4 pin M12	
CMV582M-00022	8192	4096	10FL/19,5 ZB36/D65	Radial	3x 4 pin M12	
CMV582M-00025	8192	4096	6GL/10 ZB50	Radial	3x 4 pin M12	Reset Switch
CMV582-ETC (M) I	Magnet detec	tion, solid shaft	t, EtherCAT			
CMV582M-00002	8192	4096	10FL/19,5 ZB36	Axial	3x 4 pin M12	
CMV582M-00006	8192	4096	10FL/19,5 ZB36	Radial	3x 4 pin M12	
CMV582M-00013	8192	4096	12FL/25 ZB36	Axial	3x 4 pin M12	
CMV582-IOL (M) N	Magnet detect	ion, solid shaft	, IO-Link			
CMV582M-00028	4096	4096	10FL/19,5 ZB36 3xM3+3xM4	Radial	4 pin M12	
CMV582M-00034	4096	4096	10FL/19,5 ZB36/D65	Radial	4 pin M12	
CMS582-SSI (M) N	lagnet detecti	ion, blind shaft	, SSI			
CMV582M-00039	4096	4096	10FL/19,5 ZB36 3xM3+3xM4	Radial	4 pin M12	
COS582-EPN (O) C	Optical 18 Bit,	blind shaft, PR(OFINET			
COS582M-00001	262144	1	10H7 blind shaft	Axial	3x 4 pin M12	Clamping ring flange side
COV582-EPN (O) C	Optical 18 Bit,	solid shaft, PRC	OFINET			
COV582M-00002	262144	4096	10FL/19,5 ZB36 D65	Radial	3x 4 pin M12	
COV582M-00003	262144	4096	10FL/19,5 ZB36 3xM3+3xM4	Axial	3x 4 pin M12	
	1	1		1	1	

For further product information simply enter the order number in the search field at www.tr-electronic.com.

Order code	Steps per turn	Turns	Shaft / Flange	Connector position	Connector type	Remark
COV582-ETC (O) 0	ptical 18 Bit, so	lid shaft, EtherCA	Т			
COV582M-00001	262.144	4096	10GL/19,5 ZB36 3xM3+3xM4	Radial	3x 4 pin M12	
COH582-SSI (O) O	ptical 18 Bit, sol	id shaft, SSI		-		
COH582M-00001	262.144	64	12H7 hollow shaft with keyway	Radial	12 pin M23	

For further product information simply enter the order number in the search field at www.tr-electronic.com.

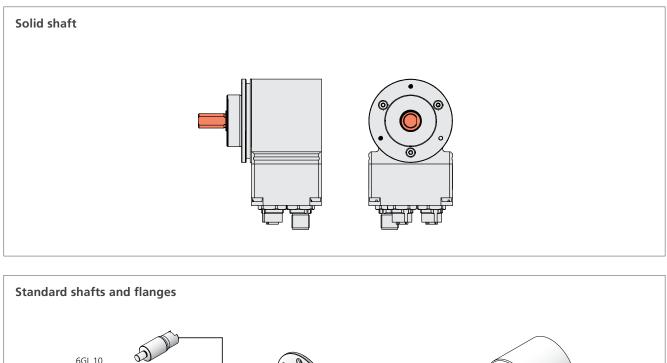
Further product information

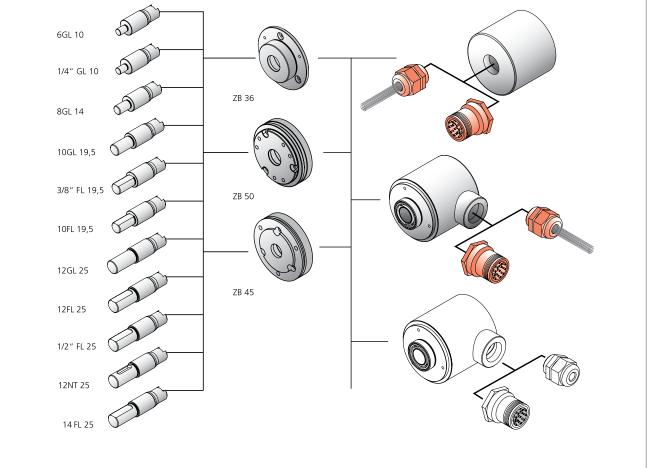
1. Enter order code into ...

0	(manyara)	distant.	(Bettind	- Indered	4
0	- 88	441	des biologies	(PRA)	-
distant and	1.600	and .	201 101-101	ONIX	1.Ha
and the owner where the	41.10		1.000	(MAR)	1.00
COLUMN STREET,	10.00	494	201.001-001	CIPPER/	1.00
100000-000-00	1,000	1000	2010/09/2010 4410/44	circles,	
(renter over 1	4.00230	and	34	COURSES INCOME	ACCELLADS
date into the					
-Containents	- 88	1445	-	1000	ane
CONTRACTOR A	1.000	4.00	OR DESIGNATION.	1000	1.00
Canadian City.					
200304000	1.000	10.94	1815	insta	record a
(Inclusion)	4 785,788		THE MEMORY		(S) and
Contract and	400.00		dest intrivient	Taken .	1919.00
Bestellnummer			Umdrehung		Welle
CMV58-	Ą.		The second second		
CMV585-00011			1,000	_	010h7

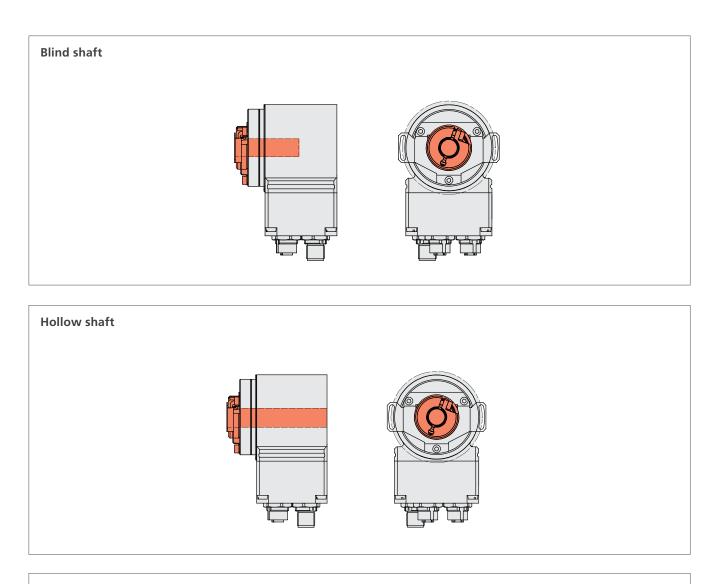
2. Searchfield (top right) on www.tr-electronic.com

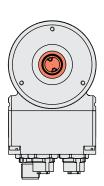
3. Choose desired information

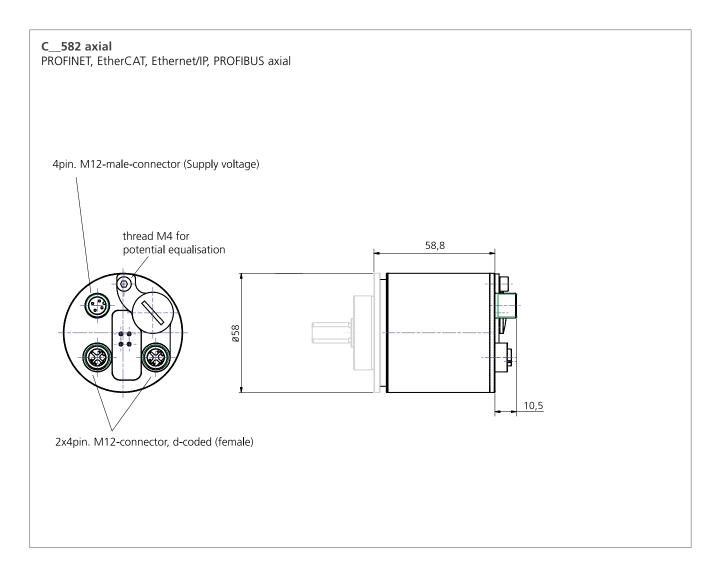

nic	C 0 + 1	•
at Alaba Seria chemine	street _	9
Device w CM/SES*096/1.8/A/J 3020101, Head Victory Cateriol	10 mm	
	Anna anna an Anna an Anna an Anna an Anna an Anna an Anna	
to be a second second		
designs have a designing lands of		
		2
		÷
	Andrea M Constant Andrea Mark of Matteria Mark Mark of States of Case and Mark of Case and Case and Case and Case and Ca	And and a Conservation of the second se

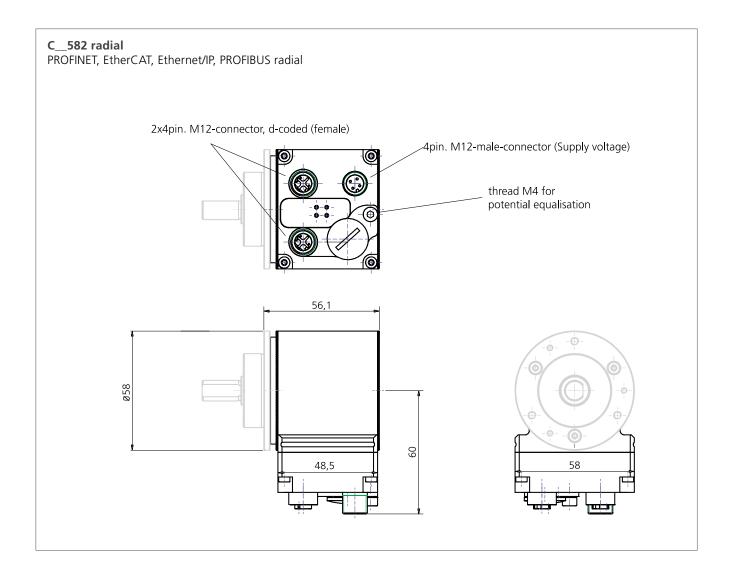

We will help you to select the most suitable products from the complete TR range. Please contact us (info@tr-electronic.de).

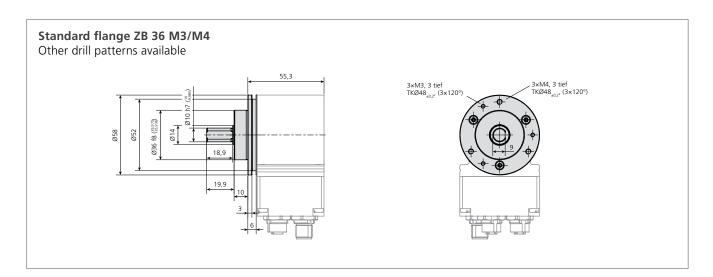
Shaft Types

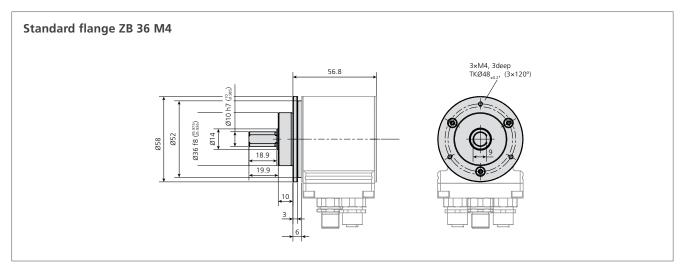


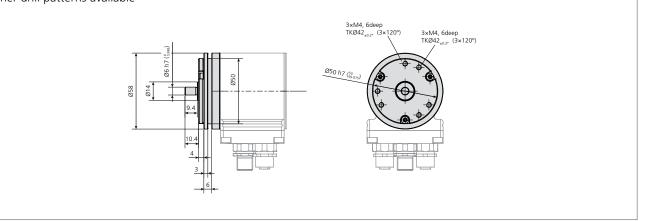

Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

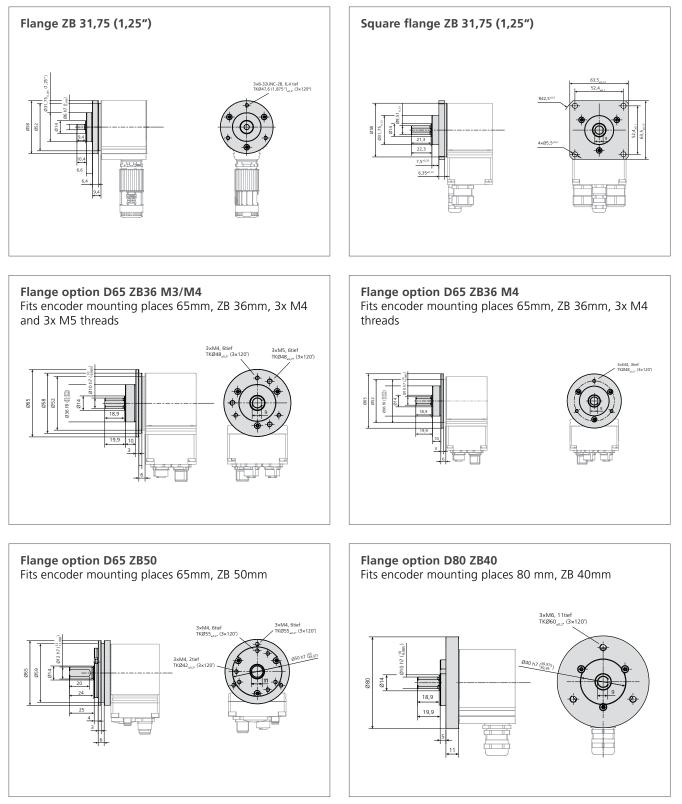

Shaft Types

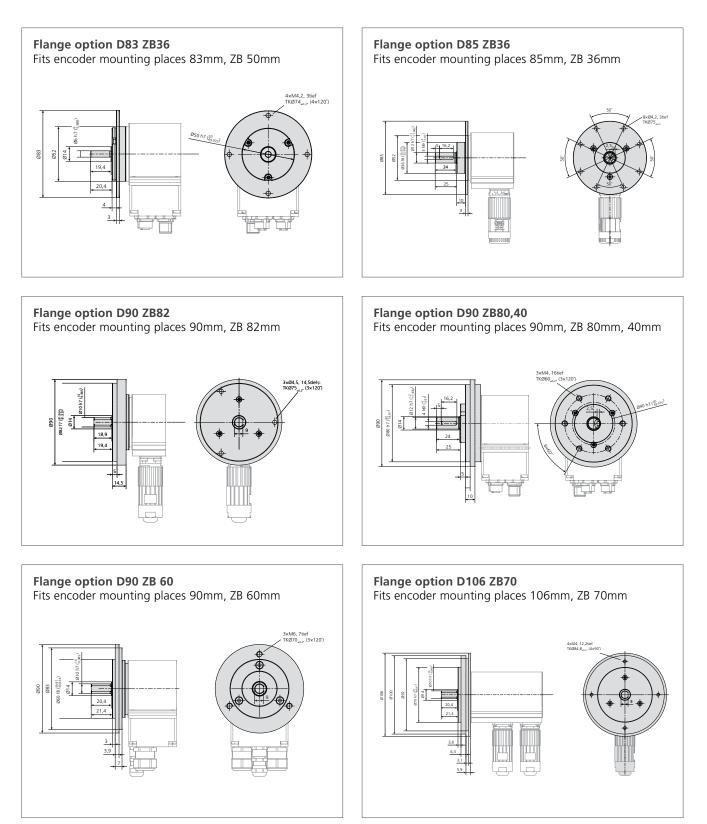

Integrated coupling

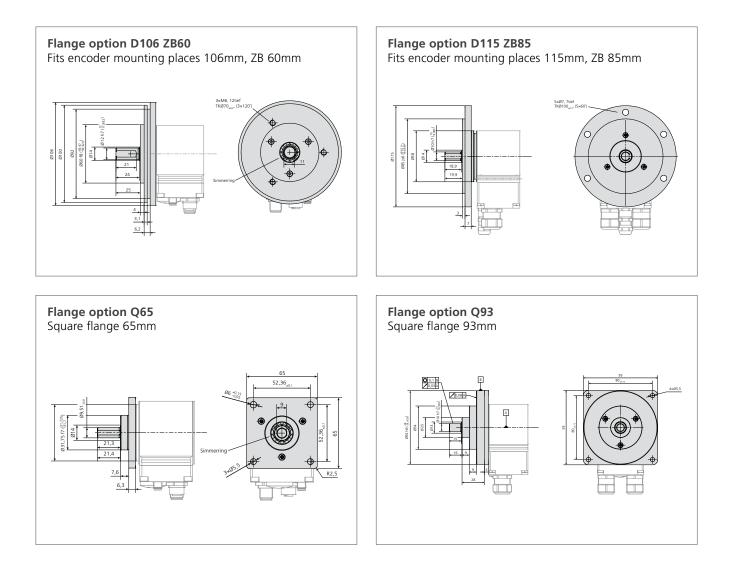


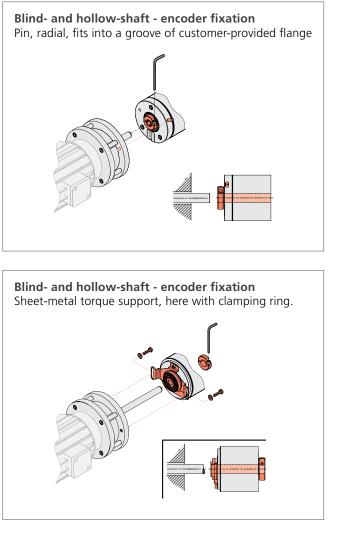

Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

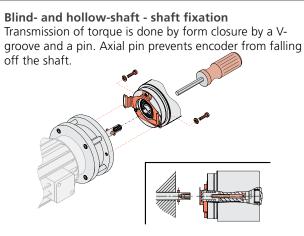


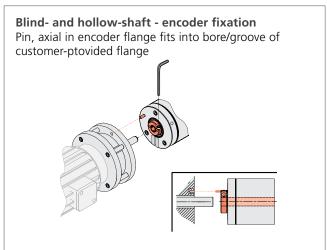


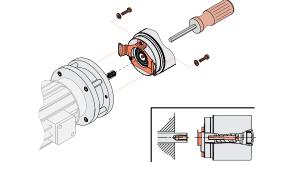


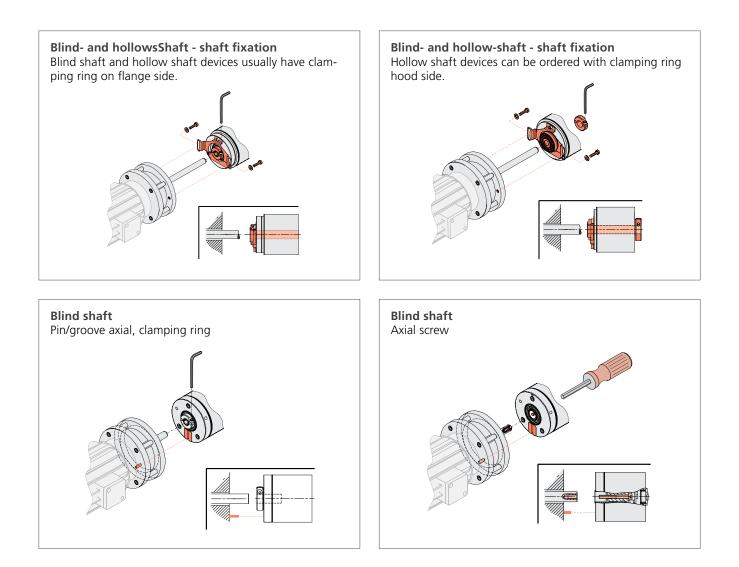



Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

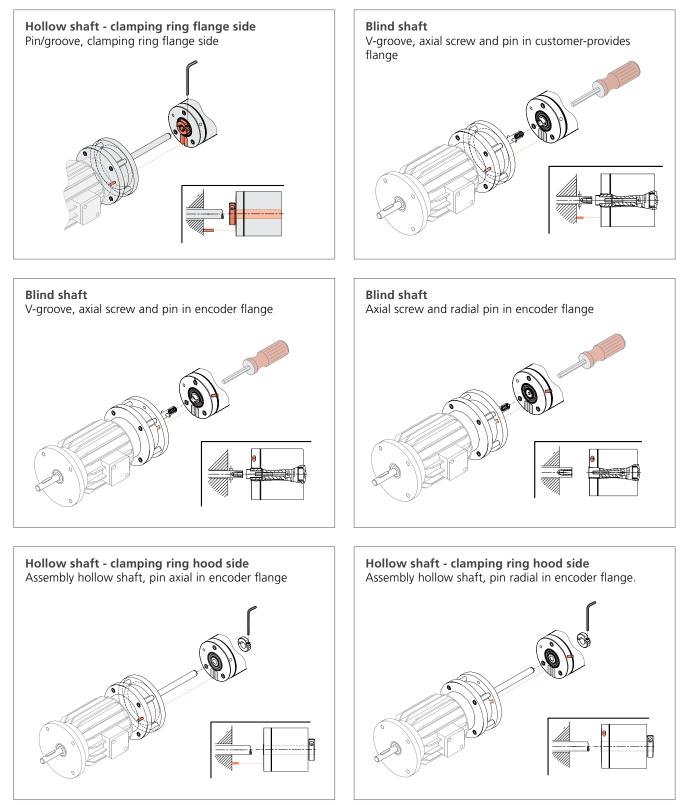




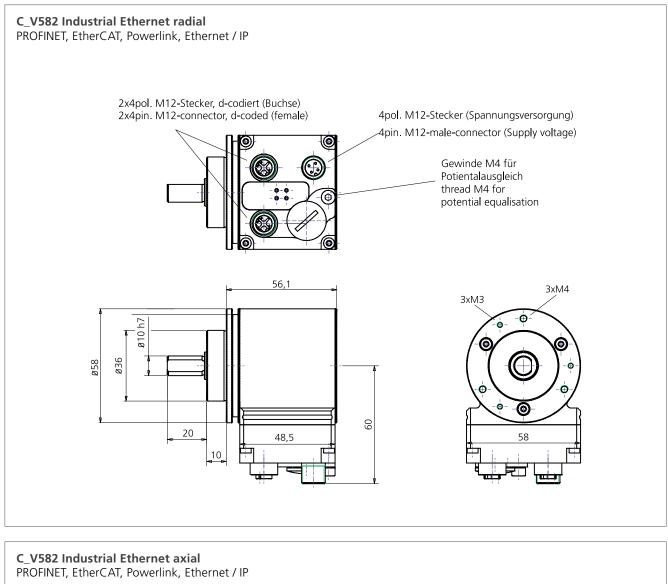

Assembly Examples

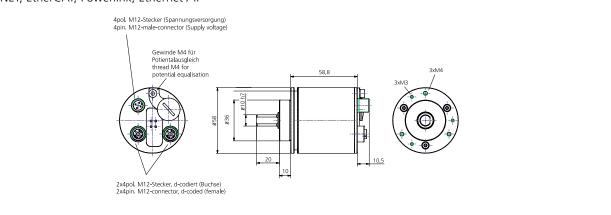


Blind- and hollow-shaft - encoder fixation Axial screw attaches the shaft to the encoder. Here with a sheet-metal torque support.

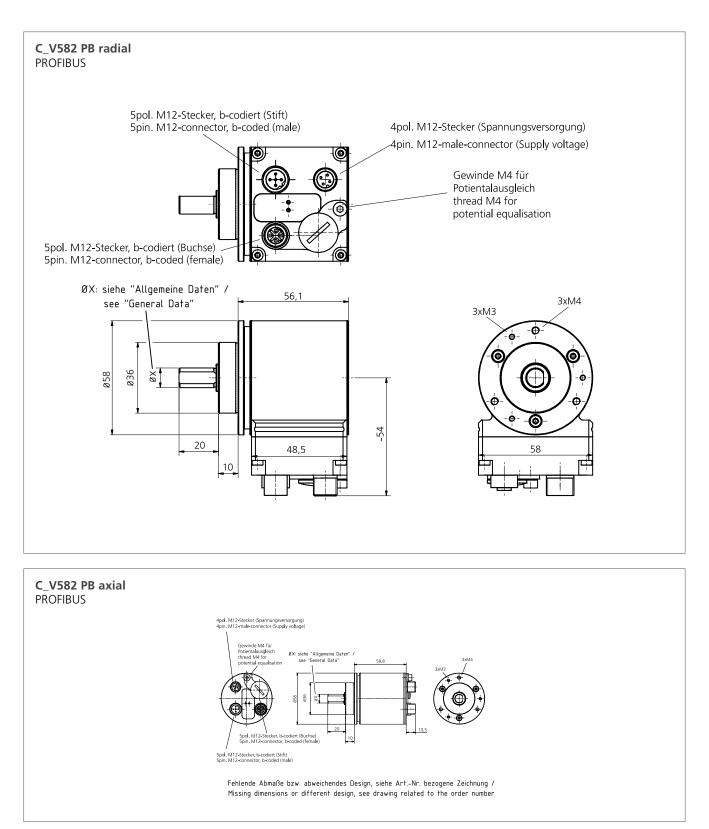


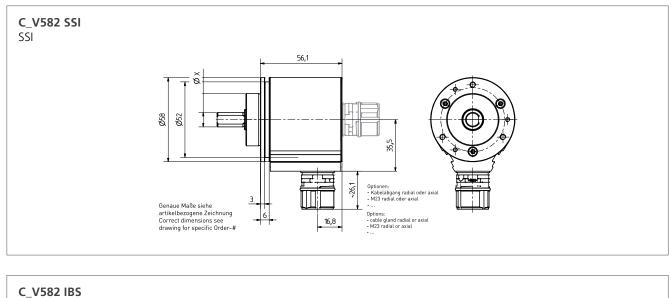
Assembly Examples


www.tr-electronic.com

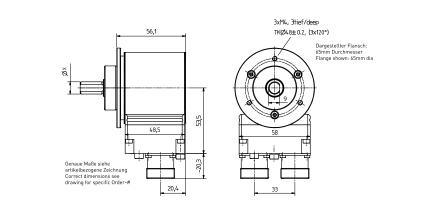

Assembly Examples

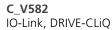
Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

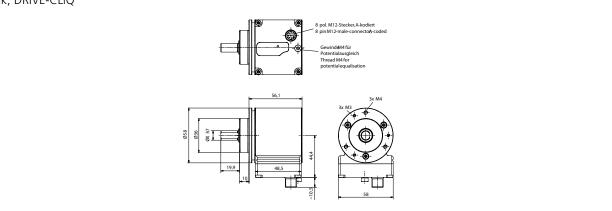


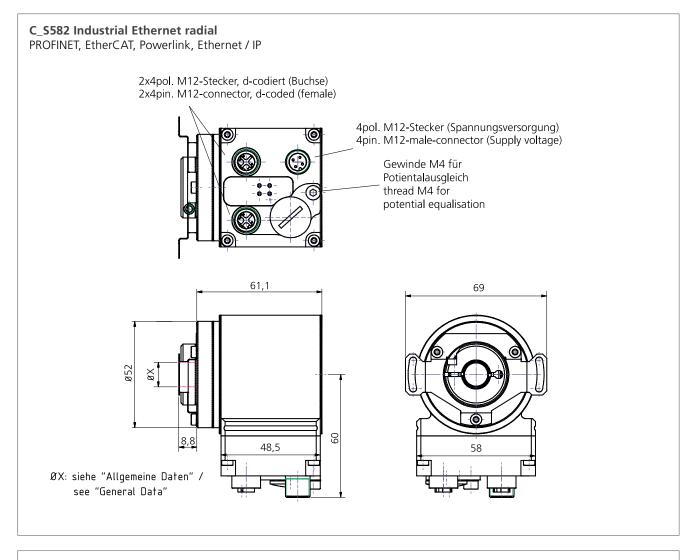


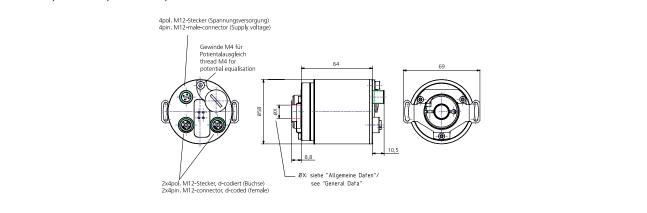
Can't find the right variant? Please contact us (info@tr-electronic.de). Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

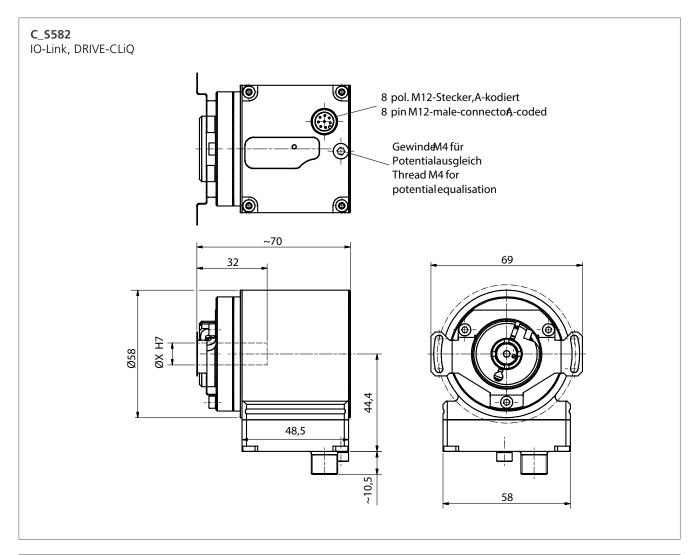

31

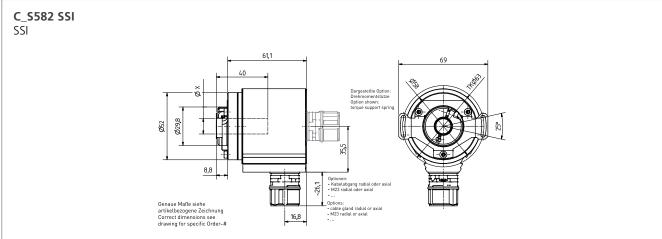




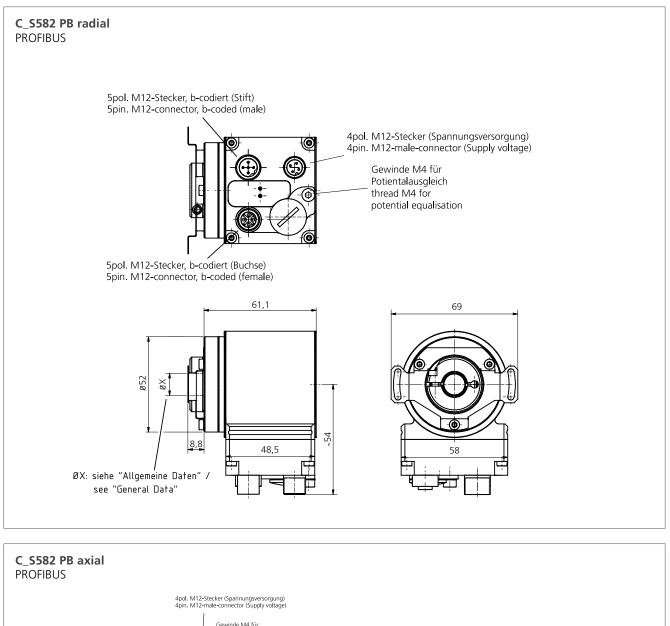

Interbus

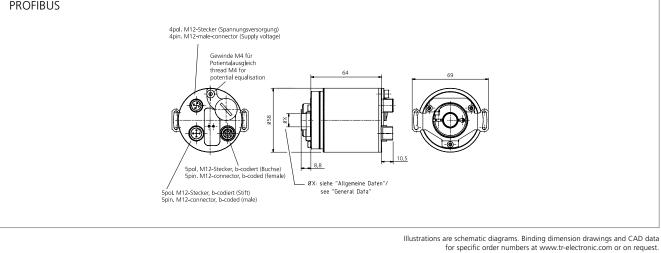


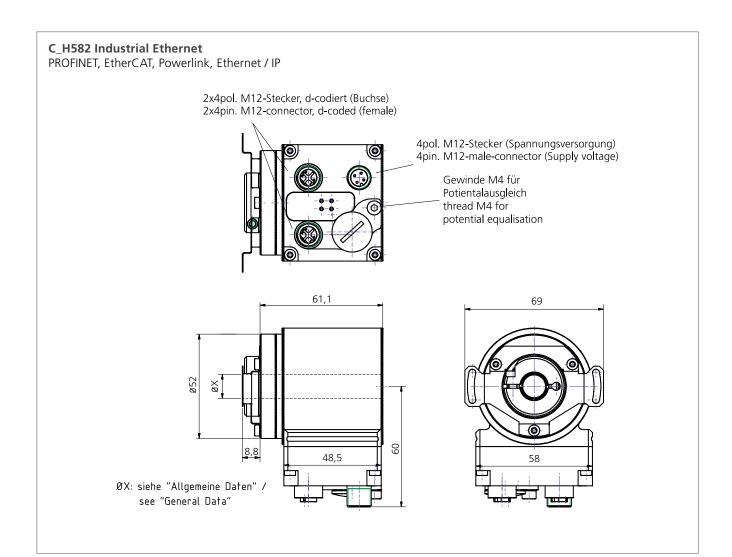

33

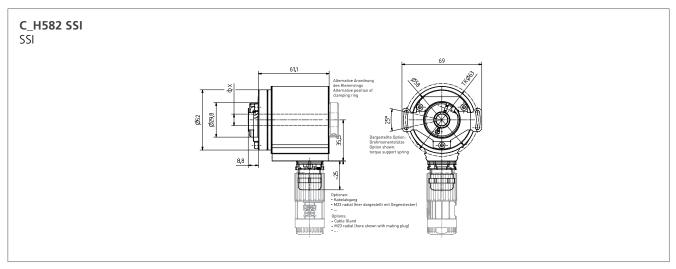


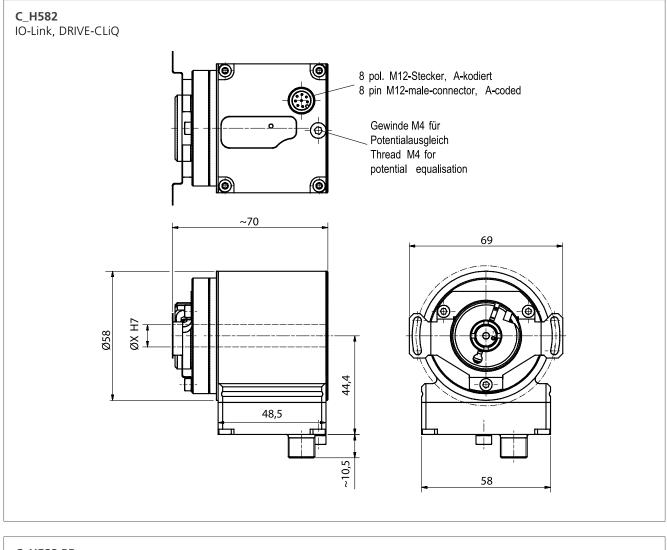
C_S582 Industrial Ethernet axial PROFINET, EtherCAT, Powerlink, Ethernet / IP

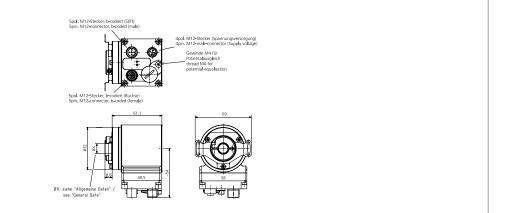







Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.





Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

TR-Electronic GmbH Eglishalde 6 D - 78647 Trossingen

Tel. +49 7425 228-0 Fax +49 7425 228-33

info@tr-electronic.de www.tr-electronic.de

Last update: 10/2019 68-105-119 · TR-V-PR-GB-0032-05 Subject to technology and design modifications. Cover photo background: [©]kras99-fotolia.com