Absolute Rotary Encoders
SIL3 / PLe
Family CD_75
Rotary Encoders- Functional Safety - SIL3 / Ple

Functional safety up to SIL3 / Ple

Many applications in automation technology are subject to the highest safety requirements. By using SIL3/PLe-certified products you will achieve maximum safety in workplaces or environments that are shared by people and machines. Our absolute rotary encoders with SIL3 or PLe certification (safety rotary encoders) are available in sizes from 75 mm (hollow shaft or solid shaft). Standard interfaces such as Double SSI, PROFIsafe via PROFIBUS, PROFIsafe via PROFINET or openSAFETY via Powerlink or EtherCAT guarantee optimal safety and precision. The ATEX-compliant housing variant offers additional protection in explosive atmospheres. No separate modules are necessary for reliable position output, and there is no need to separately program a safety module - you couldn’t get a simpler or more cost-effective solution.

Contents

Safety rotary encoders ... 3
Communication and preset .. 8
Parameterization .. 10
Standard versus Integrated Safety 12
Safety according SIL3/PLE .. 13
Products ... 15
Suggested Products .. 17
Dimensional Drawings .. 19
Safety rotary encoders

The double rotary encoder system with solid- or hollow shaft and multi-turn detection fulfill the requirement of EN 615081, EN 61508, EN ISO 13849 and the EN6206*. The use of certified individual components makes it easier for the system integrator to fulfill the safety requirements of the entire application, for example within the event technology, storage and logistic technology and wind energy.

The use of our SIL 3-certified safety absolute rotary encoder liberates the user from the obligation to prove functional safety for this positioning sensor separately. With certified components the strict safety guidelines will be met. The double rotary encoders CD_75 M are available with hollow and solid shaft. They are approved for applications according to SIL 3 or PLe.

For local motor feedback, there is an optional rectangle or sine/cosine incremental output available. Different resolutions can be chosen (period/revolution).

* test regulations category 4/PL e according to EN ISO 13849-1, SIL CL 3 according to EN 61800-5-2/EN 62061 and IEC 61508.
Safety rotary encoders

Possible application areas

- crane technology
- event and stage technology
- drive technology
- conveying systems and logistics
- machinery and plant engineering
- automation technology
- wind energy plant

Cranes with overlapping work areas or with obstacles within the working area
Through measurement of rope positions and rotation angles, collisions can be avoided. Numerous travelling cranes on a common track – through safe measurement of each position, collision can be avoided.

Common work areas of men and machines –
Through safe position detection in the various areas of safety, safe work areas can be differentiated from each other.

Processes with minimal or maximum speed – Through safe speed sensing, it is assured that the drive never oversteps a maximum speed or that it safely achieves a required speed before starting a process.

Synchronous run monitoring\(^1\) – An unsafe electrical axial synchronization can be made safe by using a certified SIL 3/PLe rotary encoder with an externally attached safety system.

Shaft control\(^1\) – Rotation through overload or a twist-off will be detected through a SIL 3/PLe rotary encoder with an external safety system.

Advantage of certified components

The basic safety standard EN 61508\(^2\) differentiates between measures to eliminate errors and measures to control errors. The measures to eliminate errors embrace the entire design and development process. These are required for the development of individual components and they serve to avoid systematic errors.

Important for error control are quantifiable characteristics of the considered components and of the complete system. The probability of a dangerous failure of the safety function has priority. The calculation results in the rated failure probability of all individual components for the entire safety chain. It is checked and documented how systematic errors can be avoided or controlled for certified components.

If non-certified components are chosen to be used solely based on their mathematical safety value, the responsibility is laid upon the person who undertook the construction.

The producer of components with certification makes a clear statement: “Yes, ideal for safety-oriented applications”. As a user of certified components you can rely on this – after all, the certification according to SIL 3 or PLe has been given by independent specialists.

\(^1\)on request \(^2\)test regulations category 4/Pl e according to EN ISO 13849-1, SIL CL 3 according to EN 61800-5-2/EN 62061 and IEC 61508.
SIL and PL – two scales for safety

SIL The safety integrity level (SIL) is described in the international standard according to EN 61508. It serves to judge electrical/programmable systems relying on dependability of safety functions. The aimed-at level indicates which safety-related construction principals have to be satisfied to minimize the risk of malfunctions.

PL Within the standard EN ISO 13849-1 five categories are defined, called performance levels (PL). They build on one another, starting with a, b, c, d and e. The different levels help to classify safety-related performance. They are determined according to the average probability of a dangerous failure and the diagnostic coverage and in consideration of the structural design of a system (how many channels the system has, how independent they are from each other). Our safety rotary encoders are certified according to PL “e”, the highest performance level.
Rotary encoder, safe according to SIL 3 / PL e

Within the revolution in system one the shaft position is detected with an optical single-turn encoder. The revolutions are detected over mechanically attached satellites. This gives the absolute positioning value of measurement system one. For system two, the revolution position is transferred via magnetic central detection, and the revolutions are detected with magnetic equipped satellites. This gives the absolute positioning value of measurement system two. The CPUs give each other signs of life.

The optical detection gives out incremental signals. It can be switched between rectangle and sine/cosine outputs with various resolutions. For safety reasons, the resolutions of the measurement systems are not programmable.
For a lot of applications in automation technology, there are high safety requirements. Dangerous plant conditions can be avoided by using SIL 3 / PL e-certified rotary encoders. You don’t have to independently prove the functional safety of these position sensors.

Current solution
Until now, for applications with high safety requirements, absolute rotary encoders with additional incremental signals have been used. The incremental signals function as a control over the positioning values. With this method, there was a safety deficit when turning on the machine because there was only one absolute value available. If this value was wrong due to data loss or an adjustment value, it couldn’t be detected.

Certified solution
The absolute rotary encoder CD_75 M captures the revolution information through a mechanical gear without a battery backed revolution counter. Development, technology and production of this device is certified through the *TÜV. They are used in plants and equipment requiring safety integrity level 3 (SIL 3: IEC 61508 / EN 62061) or a performance level e (PL e: EN ISO 13849 -1). The CD_75 PROFIsafe additionally gives out safe speed values.

*German Association for Technical Inspection
Communication and preset

Communication with safety bus system

The actual values will be transferred via safety bus system. Within the safe protocol part the actual value and the speed will be transferred. These values are also available over not safe normal bus telegrams. Therefore, safe and normal control parts have access to it. Certified are the bus interface, the bus compliance, as well as the fulfilling of the safety standards.

The actual values for position and speed are transferred in two slots:

- For safe transmission the actual position values of both rotary encoder systems are compared. If the difference is smaller than the adjusted control window, the rotary encoder value does count as safe. The safe actual position value and the derived safe speed value will be transferred over the secured telegram. The part of the control taking on the safety-related tasks can process these values.
- The actual position value and the calculated speed of the main rotary encoder are directly transferred within the unsecured process data channel. Usually, this channel is processed more often by the controller. Normal automation processes can access actual position values more often.
Preset via safety bus system

By setting a preset value, the actual issued value of the rotary encoder can be placed arbitrarily at a value within the maximum measurement range. With this, the shown position can be placed electronically at a machine referencing position. The offset value will be saved within the rotary encoder. Setting a preset value is a safety-relevant process. An jump of the actual value, for example using a controller, can lead to an uncontrolled movement of the machine. Therefore, setting a preset value can only be done when the relevant machine part is still. The preset is already locked within the rotary encoder and can only be activated via a special part within the safe protocol part.

Even if all preconditions of the controller are fulfilled, the preset will only be executed when the rotary encoder shaft stands still. Further measures have to be taken into account. The controller can start the preset process only when the related drives are secured against running. It is recommended to lock the preset process from the controller through further safety measures (for example key switches, password prompts, etc).
Parameterization via safety bus system

Programming tool

Controller

normal control part parameter

safe control part parameter

checksum

Programming tool

Controller

safe control part

generates set of parameters and checksum
Integrated safety – CD_75M

For numerous industrial applications such as presses, cranes and robots, it is important to exactly capture the movement exactly in position and speed. These movements always have the potential to be accompanied by a hazard. Therefore, working stations, positions and speed are always controlled. In general, controls like this require a higher standard of technology. The relevant functions are interpreted as safety functions with necessary SIL / PL. For positioning sensors, the following methods of secured data are possible.

Secured Speed Data
Secured speed data is needed to allow access to a usually dangerous area where tasks such as maintenance or start-up work have to be done. The CD_75M delivers safe position information which is used in a controller to realize secured maximum speed (SLS: Safely Limited Speed).

Safe Position
A safety function needs reliable position information when different safety requirements must be determined in different areas. With this information, for example, a “Safe Direction – SDI” can be realized, or other safety parameters in relation to the position can be determined. The CD_75M sends the safe position information directly over a appropriate safety protocol within the safety control.

Application examples
_ safety standstill
_ safety position detection (monitoring the danger area)

Parameterization

Parameters are transferred over the bus each time the machine starts up. This set of parameters will be saved over a checksum:

Reading value difference
Permissible difference between the rotary encoder values of system 1 and system 2.

Standstill tolerance
To trigger a preset process, the rotary encoder must be still. Depending on the drive, it is necessary to specify its tolerance range.

Direction of rotation
Positive count direction clockwise/counterclockwise.

Integration time
Time base of the speed calculation. Long integration times enable high resolution measurements at a low rotary speed. A short integration time shows speed changes faster: well suited for high rotation speeds and great dynamics. Information is a multiple of the cycle time of the rotary encoder system: For process data channel (unsecured) 5 … 500 ms, for safe channel 50 … 500 ms.
Conventional Standard versus Integrated Safety

Conventional Standard

The tests of the signals are done in a safety module. Depending on the features of the rotary encoder, the safety module can identify the safe speed or single/multi-turn position. The safety module decides based on the parameters of limited values and functions whether the status of the machine is safe and the drive keeps running or whether it has to stop. The safety function is solely restricted to this part of the plant. If real positioning and speed values requested (e.g. controller), a second rotary encoder is needed. Both, the controller as well as the safety module, have to be correctly programmed and parameterized.

For individual plant parts, this technology can be retrofitted. The rotary encoders used don’t have to be certified. They only have to fulfill the requirements of the producer of the safety modules.

Integrated Safety with CD_75M

The measurement values of safe speed and safe single/multi-turn position are determined within the certified rotary encoder. They are transmitted over a safe bus system to an safety-oriented module. Therefore, the safe sensor values are available for each controller of the entire machine or plant. This enables intelligent safety conditions where humans and machines share the work environment without mechanical safety devices. Work areas can be divided into different zones with adjusted safety requirements.

Position and speed values are available for either safety applications over a secured channel or for normal automation functions over an unsecured channel. Therefore, a rotary encoder for position feedback is unnecessary. Due to the integration of the PLC a safe operation with a large range of functions can be guaranteed.
Safety according to SIL 3 / PL e with 2 × SSI

The determined position values will be enhanced with status information and checksum. These position values will be distributed on separate SSI interfaces. It is the task of the sequential electronics to determine the accuracy of the measurement values by comparing both values. Hereby, additional information provided within the SSI telegram is helpful. The SSI telegram also transfers an error bit of the other system; therefore, it is possible to determine that you have to look for an error within the rotary encoder (the other system reports the error) or in the cable (the other system reports no error).

Both systems transfer the actual position value in an enhanced SSI telegram.

Error bit
The error bit of both systems is shown in both SSI channels. Therefore, if there is a malfunction in one of the SSI channels the error can be transferred into the other channel without issue. Hence, the diagnosis of both systems can be determined even when only one channel is operational.

Checksum
An 8 bit CRC checksum will be calculated from all user data within the SSI telegram and will then be put into the SSI telegram. Secured data: MT and ST data, error bits, sign of life counter. Hamming distance = 3: two incorrect data bits will safely be recognized.

Sign of life counter
The sign of life counter will be incremented with each detection process of the rotary encoder system. The incremented sign of life counter makes sure, up to the latest telegram, that the latest transferred data comes out of a new position detection.

If SSI requests happen faster than the internal detection (500 µs master channel, 500 µs safety channel), the position data and the sign of life counter remain unchanged.
Optical Detection (E)
Magnetic detection (M)

<table>
<thead>
<tr>
<th>Products</th>
<th>CDV75M</th>
<th>CDV75MM</th>
<th>CDH75M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection</td>
<td>Optical Detection (E)</td>
<td>Magnetic detection (M)</td>
<td>Optical Detection (E)</td>
</tr>
<tr>
<td>Single / Multi</td>
<td>(M) Multi</td>
<td>(M) Multi</td>
<td>(M) Multi</td>
</tr>
<tr>
<td>Supply</td>
<td>11...27 VDC</td>
<td>11...27 VDC</td>
<td>11...27 VDC</td>
</tr>
<tr>
<td>Full Resolution</td>
<td>28 bit</td>
<td>28 bit</td>
<td>28 bit</td>
</tr>
<tr>
<td>Steps per Turn</td>
<td>8192</td>
<td>8192</td>
<td>8192</td>
</tr>
<tr>
<td>Nuber of turns</td>
<td>32768</td>
<td>32768</td>
<td>32768</td>
</tr>
<tr>
<td>Properties</td>
<td>fast optical main detection</td>
<td>dewfall proof</td>
<td>fast optical main detection</td>
</tr>
<tr>
<td>Shaft diameters available</td>
<td>10mm with keyway</td>
<td>10mm with keyway</td>
<td>20mm with keyway</td>
</tr>
<tr>
<td>Connectors</td>
<td>connectors radial, cable glands radial (SSI)</td>
<td>connectors radial, cable glands radial (SSI)</td>
<td>connectors radial, cable glands radial (SSI)</td>
</tr>
<tr>
<td>Protection Class</td>
<td>IP 54</td>
<td>IP 65</td>
<td>IP 54</td>
</tr>
<tr>
<td>ATEX-Zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>Option, additional interfaces (on request)</td>
<td>INC</td>
<td>INC</td>
<td>INC</td>
</tr>
<tr>
<td>QR-Code</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Can't find the right variant? Please contact us (info@tr-electronic.de)
Optical Detection (E)

<table>
<thead>
<tr>
<th>Products</th>
<th>ADV75M</th>
<th>ADH75M</th>
<th>ADV88M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection</td>
<td>Optical Detection (E)</td>
<td>Optical Detection (E)</td>
<td>Optical Detection (E)</td>
</tr>
<tr>
<td>Single / Multi</td>
<td>(M) Multi</td>
<td>(M) Multi</td>
<td>(M) Multi</td>
</tr>
<tr>
<td>Supply</td>
<td>11...27 VDC</td>
<td>11...27 VDC</td>
<td>11...27 VDC</td>
</tr>
<tr>
<td>Full Resolution</td>
<td>28 bit</td>
<td>28 bit</td>
<td>28 bit</td>
</tr>
<tr>
<td>Steps per Turn</td>
<td>8192</td>
<td>8192</td>
<td>8192</td>
</tr>
<tr>
<td>Number of turns</td>
<td>32768</td>
<td>32768</td>
<td>32768</td>
</tr>
<tr>
<td>Properties</td>
<td>fast optical main detection</td>
<td>fast optical main detection</td>
<td>fast optical main detection</td>
</tr>
<tr>
<td>Shaft diameters available</td>
<td>10mm with keyway</td>
<td>20mm with keyway</td>
<td>10mm with keyway</td>
</tr>
<tr>
<td>Connectors</td>
<td>connectors radial, cable glands radial (SSI)</td>
<td>connectors radial, cable glands radial (SSI)</td>
<td>cable gland axial</td>
</tr>
<tr>
<td>Protection Class</td>
<td>IP 54</td>
<td>IP 54</td>
<td>IP 65</td>
</tr>
<tr>
<td>ATEX-Zone</td>
<td>Zone 2/22</td>
<td>Zone 2/22</td>
<td>Zone 1/21</td>
</tr>
<tr>
<td>Interface</td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>Option, additional interfaces (on request)</td>
<td>INC</td>
<td>INC</td>
<td>INC</td>
</tr>
<tr>
<td>QR-Code</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suggested Products

<table>
<thead>
<tr>
<th>Order code</th>
<th>Steps per Turn</th>
<th>Turns</th>
<th>Shaft / Flange</th>
<th>Connector Position</th>
<th>Connector Type</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDV75M-SSI (D) Double detection, Solid shaft, SSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDV75M-00001</td>
<td>8192</td>
<td>4096</td>
<td>10Keyway/19,5</td>
<td>2 x cable gland</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
<tr>
<td>CDV75M-00002</td>
<td>8192</td>
<td>32768</td>
<td>10Keyway/19,5</td>
<td>Connector radial</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
<tr>
<td>CDV75M-PB (D) Double detection, Solid shaft, Profibus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDV75M-00008</td>
<td>8192</td>
<td>32768</td>
<td>10Keyway/19,5</td>
<td>Connector radial</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
<tr>
<td>CDV75M-PN (D) Double detection, Solid shaft, Profinet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDV75M-00012</td>
<td>8192</td>
<td>32768</td>
<td>10Keyway/19,5</td>
<td>Connector radial</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
<tr>
<td>CDV75M-00014</td>
<td>8192</td>
<td>32768</td>
<td>10Keyway/19,5</td>
<td>Connector radial</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
<tr>
<td>CDV75M-00018</td>
<td>8192</td>
<td>32768</td>
<td>10Keyway/19,5</td>
<td>Connector radial</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
<tr>
<td>CDV75M-00026</td>
<td>8192</td>
<td>32768</td>
<td>10Keyway/19,5</td>
<td>Connector radial</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
<tr>
<td>CDV75M-EPL (D) Double detection, Solid shaft, Powerlink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDV75M-00021</td>
<td>8192</td>
<td>32768</td>
<td>10Keyway/19,5</td>
<td>Connector radial</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
<tr>
<td>CDH75M-SSI (D) Double detection, Hollow shaft, SSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDH75M-00001</td>
<td>8192</td>
<td>4096</td>
<td>20H7/Keyway Slot for pin D4</td>
<td>2 x cable gland</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
<tr>
<td>CDH75M-00024</td>
<td>8192</td>
<td>4096</td>
<td>14H7/Keyway Slot for pin D4</td>
<td>2 x cable gland</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
<tr>
<td>CDH75M-PB (D) Double detection, Hollow shaft, Profibus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDH75M-00008</td>
<td>8192</td>
<td>32768</td>
<td>20H7/Keyway Slot for pin D4</td>
<td>Connector radial</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
<tr>
<td>CDH75M-PN (D) Double detection, Hollow shaft, Profinet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDH75M-00013</td>
<td>8192</td>
<td>32768</td>
<td>20H7/Keyway Slot for pin D4</td>
<td>Connector radial</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
<tr>
<td>CDH75M-00019</td>
<td>8192</td>
<td>32768</td>
<td>20H7/Keyway Slot for pin D4</td>
<td>Connector radial</td>
<td>TTL incr -20°C...70°C</td>
<td></td>
</tr>
</tbody>
</table>

For further product information simply enter the order number in the search field at www.tr-electronic.de.

We will help you to select the most suitable products from the complete TR range. Please contact us (info@tr-electronic.de).
Suggested Products

<table>
<thead>
<tr>
<th>Order code</th>
<th>Steps per Turn</th>
<th>Turns</th>
<th>Shaft / Flange</th>
<th>Connector Position</th>
<th>Connector Type</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDH75M-EPL (D) Double detection, Hollow shaft, Powerlink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CDH75M-00026 8192 32768 20H7/Keyway Slot for pin D4 Connector radial 4 x M12</td>
</tr>
<tr>
<td>ATEX ADV75M-PB (D) Double detection, Solid shaft, Profibus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADV75M-00001 8192 32768 10Keyway/19,5 ZB50/D75 9XM4 Connector radial 5 x M12 II 3G Ex nAc IIC T6X II 3D Ex tc IIIC T65°C IP64 X</td>
</tr>
<tr>
<td>ATEX ADV75M-PN (D) Double detection, Solid shaft, Profinet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADV75M-00002 8192 32768 10Keyway/19,5 ZB50/D75 9XM4 Connector radial 4 x M12 II 3G Ex nAc IIC T6X II 3D Ex tc IIIC T65°C IP64 X</td>
</tr>
<tr>
<td>ATEX ADH75M-PB (D) Double detection, Hollow shaft, Profibus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADH75M-00001 8192 32768 20H7/Keyway Slot for pin D4 Connector radial 5 x M12 II 3G Ex nAc IIC T6X II 3D Ex tc IIIC T65°C IP64 X</td>
</tr>
<tr>
<td>ATEX ADH75M-PN (D) Double detection, Hollow shaft, Profinet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ADH75M-00002 8192 32768 20H7/Keyway Slot for pin D4 Connector radial 4 x M12 II 3G Ex nAc IIC T6X II 3D Ex tc IIIC T65°C IP64 X</td>
</tr>
</tbody>
</table>

Further product information

1. Enter order code into …
2. Searchfield (top right) on www.tr-electronic.com
3. Choose desired information

We will help you to select the most suitable products from the complete TR range. Please contact us (info@tr-electronic.de).
Dimensional Drawings

CDV75-SSI
Absolute-Encoder CDV75M - SSI

CDV75-PB
Absolute-Encoder CDV75M - PB

CDV75-PN / EPL
Absolute-Encoder CDV75M - PROFINET / PROFIsafe, - Powerlink / openSAFETY

CDV75-PN
Absolute-Encoder CDV75M - PROFINET / PROFIsafe+FS SealPack

CDH75-SSI
Absolute-Encoder CDH75M - SSI

CDH75-PB
Absolute-Encoder CDH75M - PB

Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.
Dimensional Drawings

CDH75-PN / EPL
Absolute-Encoder CDH75M - PROFINET / PROFIsafe, - Powerlink / openSAFETY

CDH75-PN
Absolute-Encoder CDH75M - PROFINET / PROFIsafe+FS SealPack

ADV75-PB
ATEX Zone 2/22 Absolute-Encoder ADV75M - PB

ADV75-PN
ATEX Zone 2/22 Absolute-Encoder ADV75M - PROFINET / PROFIsafe

ADH75-PB
ATEX Absolute-Encoder ADH75M - PB

ADH75-PN
ATEX Zone 2/22 Absolute-Encoder ADH75M - PROFINET / PROFIsafe

Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.
Dimensional Drawings

Seal Pack
Sample CDV75

Stainless Steel
Sample CDV75

Seawaterresistant aluminum
Sample CDH75

ADV88
ATEX Zone 1/21

Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

www.tr-electronic.com
Headquarters

TR-Electronic GmbH
Eglishalde 6
D-78647 Trossingen
Germany
Tel.: +49/7425 228-0
Fax: +49/7425 228-33
info@tr-electronic.de
www.tr-electronic.de

International

Argentina
AEA Aparátos Eléctricos
Automáticos
S.A.C.I.E. /Asunción 2130
AR-1419 Buenos Aires
Tel.: +54/11 - 4574 1155
Fax: +54/11 - 4574 2400
servicioalcliente@aea.com.ar
www.aea.com.ar

Brazil
Grupo C+ Tecnologia
Rua dos Caetés
601 - Perdizes
BR - São Paulo – SP
CEP:05016-081
Tel.: +55/11-2168 6554
Fax: +55/11-2168 6555
info@ctecnologia.com.br
www.ctecnologia.com.br

Canada
TR Electronic
P.O. Box 2543, Station B
CDN-London, Ontario Canada
N6A 4G9
Tel.: +1/519-452 1999
Fax: +1/519-452 1177
customercare@trelectronic.com
www.trelectronic.com

China
TR-Electronic (Beijing) CO., LTD.
Rm. 1302, Side A, Lucky Tower
No. 3 Dongshanghuan North Road
Chaoyang District
CN-100027 Beijing, P.R. China
Tel.: +86/10 - 646 131 96
Fax: +86/10 - 646 135 51
lu.yu@tr-electronic.de
www.trelectronic.com.cn

Czech Republic, Slovakia
DEL a.s.
Strojírenská 38
45911 Pilsen
Tel.: +420/566 657 100
Fax: +420/566 621 657
zastoupeni.tr@del.cz
www.del.cz

France
TR-Electronic France SARL
1 Av. Christian Doppler
Bâtiment 2
F-77700 Serris
Tel.: +33/1-64 63 68 68
Fax: +33/1-61 10 17 66
info@tr-electronic.fr
www.trelectronic.fr

Great Britain
TR-Electronic Limited
4 William House, Old St.
Michaels Drive, Braintree
GB-Essex CM7 2AA
Tel.: +44/1 371-876 187
Fax: +44/1 371-876 287
info@trelectronic.co.uk
www.tr-electronic.co.uk

India
Global-Tech (India) Pvt Ltd
404 White House
1482 Sadashiv Peth
IND-Tilak Road, Pune - 411 030
Tel.: +91/20 - 2447 00 85
Fax: +91/20 - 2447 00 86
info@globaltechnindia.com
www.globaltechnindia.com

Israel
Dor Engineering
P.O.Box 6
ISR-4880500 Kibutz Einat
Tel.: +972/3 9007595
Fax: +972/3 9007599
info@doreng.co.il
www.doreng.co.il

Italy
Telestar S.r.l.
Via Novara, 35
I-28010 Vaprio D’Agogna (NO)
Tel.: +39/03-21 966 768
Fax: +39/03-21 996 281
telestar@telestar-automation.it
www.telestar-automation.it

Japan
SANTEST CO. LTD.
1-60 Tsuenyoshi, 1-Chome
Konozaku
I-Osaka 554-8691
Tel.: +81/6-6465 5561
Fax: +81/6-6465 5921
info@santest.co.jp
www.santest.co.jp

Austria
TR-Electronic GmbH
Tragösserstraße 117
A-8600 Bruck/Mur
Tel.: +43/3862 – 55006 0
Fax: +43/3862 – 55006 33
info@tr-electronic.at
www.tr-electronic.at

Australia
Sensor Measurement Pty Ltd.
Unit 8/26 Shields Crescent
P.O. Box 1079
AU-Booragoon
Western Australia 6154
Tel.: +61/8-93 17 25 52
Fax: +61/8-93 17 24 52
sales@sensormeasurement.com.au
www.sensormeasurement.com.au

Belgium
TR-Electronic Benelux BV
Dorpostraat 18F
NL-5386AM Geffen
Tel.: +31/4335 23 614
Mobil: +31/6383 28 303
rene.verbruggen@tr-electronic.de